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1. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X t Y is
an n-dimensional topological manifold.

Is S1 t S2 a topological manifold?

2. Recall that that the discrete topology on a set X is given by declaring that every 1-point set
{x} ⊂ X is open (and hence every subset of X is open). Prove that a topological space X is a
topological manifold of dimension zero iff X has the discrete topology.

?3?. Let X = S1, and let (U1, f1) and (U2, f2) be the two ‘stereographic projection’ co-ordinate
charts described in Example 2.4. Define a new co-ordinate chart (U0, f0) by

U0 = S1 ∩ {y < 0} , Ũ0 = (−1, 1) ⊂ R

f0 : U0
∼−→ Ũ0

(x, y) 7→ x

(a) Write down the transition functions φ10, φ01, φ20 and φ02, including their domains and
codomains.

(b) Is (U0, f0) compatible with the atlas {(U1, f1), (U2, f2)}?

4. Prove Lemma 2.15.

5. Define an equivalence relation on R2 by

(x, y) ∼ (x+ n, (−1)ny +m), ∀n,m ∈ Z

(these are the orbits of a group action generated by a vertical translation and a horizontal glide
reflection). Let K be the topological space:

K = R2/ ∼

(a) Find a smooth atlas on K. Hint: copy Example 2.12.

(b) What does K look like?

6. Prove Corollary 2.20.

7. Let f : R→ R be the function f : x 7→ x3. Is (R, f) a co-ordinate chart on R? Is it compatible
with the standard smooth structure on R?

8. Let q : R2 → T 2 be the quotient map from Example 2.12. Let Ũ ⊂ R2 be an open set such that
q|Ũ is injective, and let U = q(Ũ).

(a) Prove that (q|Ũ )−1 : U → Ũ is a co-ordinate chart on T 2.

(b) Prove that this chart is compatible with the smooth structure from Example 2.12.
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1. Complete the proof of Proposition 2.26 by proving the two statements
asserted in the final sentence.

2. Let X be any manifold, and let x be a point in X. Show that the subset
Z = {x} is a submanifold of X.

3. Let X be the 2-torus T 2 = R2/Z2. Let Z ⊂ X be the subset:

Z =
{

[(x, y)] ∈ X ; y = 1
3 sin(2πx) +m, for some m ∈ Z

}
Show that Z is a submanifold of X.

?3?. Let g : Rn → R be a smooth function, and let

Z = {(x, g(x)) ; x ∈ Rn} ⊂ Rn+1

be the graph of g. Prove that Z is a submanifold of Rn+1,

(a) without using Proposition 3.16,

(b) using Proposition 3.16.

4. Find a function h : Rn → Rk having a critical value α ∈ Rk such that the
level set h−1(α) ⊂ Rk is a submanifold of codimension k.

5. Let Z = h−1(1) ⊂ R3 be the torus from Example 3.22. Following the
procedure from that example and Example 3.21, construct a chart on Z
containing the point (3, 0, 0).

6. Show that the group

SL2(R) = {M ∈ Mat2×2(R) ; det(M) = 1}

is a 3-dimensional submanifold of Mat2×2(R) ∼= R4. Now construct a chart
on SL2(R) containing the identity matrix.

7. (Advanced.) Generalize Example 3.8 to show that, for any k ≤ m ≤ n,
the Grassmannian Gr(k,m) sits as a submanifold inside Gr(k, n).

1



M4P52 Manifolds, 2016

Problem Sheet 3

1. (a) Let F = (f, g) : Rn → R2 be a smooth function, let α be a regular
value of f , and let (α, β) be a regular value of F . Let Y = f−1(α)
and let Z = F−1(α, β). Prove that Z is a submanifold of Y .

Now let F be the function:

F : R4 → R2

(x, y, z, w) 7→ (x2 + y2, z2 + w2)

(b) For any α ∈ (0, 1), show that the set F−1(α, 1−α) is a 2-dimensional
submanifold of S3.

(c) What do these submanifolds look like? What happens at α = 0 or
1?

2. Let X be the manifold (R, [C]) where [C] is the non-standard smooth struc-
ture from Example 2.25. Describe all the smooth functions from X to R.

3. Show that a smooth function between two manifolds must be continuous.

?4?. Consider the function:

F : Sn → RPn

(x0, ..., xn) 7→ x0 : ... :xn

(a) Prove that F is smooth. (Hint: use the charts on Sn from Example
3.21.)

(b) Is F surjective? Is it injective?

5. Fix n ∈ Z, and consider the function:

F : T 1 → T 1

[t] 7→ [nt]

Prove that F is smooth. Describe the level sets of F .

6. (a) Prove Lemma 4.7.

(b) Prove Lemma 4.8.
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1. Prove Lemma 4.18.

2. (a) Prove Lemma 4.20.

(b) Formulate and prove a ‘dual’ statement involving submersions.

3. Suppose F : X → Y is a submersion between a manifold of dimension n
and a manifold of dimension k.

(a) Show that at any point we can find co-ordinate charts which make
F look like the standard projection π : Rn → Rk.

(b) Deduce that the image of F is an open set in Y .

?4?. (a) Compute the rank of the function

F : T 2 → R3

[(s, t)] 7→
(
cos 2πs(2 + cos 2πt), sin 2πs(2 + cos 2πt), sin 2πt

)
at all points in T 2. Hint: first consider points where cos 2πt 6= 0.

(b) Consider the level set Z1 = h−1(1) ⊂ R3 of the function h from
Example 3.20. Show that F defines a smooth function from T 2 to
Z1. Assuming that this a bijection, prove that it is a diffeomorphism.

5. Let X by the manifold R equipped with the standard smooth structure,
and let Y be the manifold R equipped with the non-standard smooth
structure [C] from Example 2.25. Prove that X and Y are diffeomorphic.

6. Prove that RP1 is diffeomorphic to T 1.
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?1?. Let X = S2, and let (U1, f1), (U2, f2) be the two stereographic projection charts from Example
2.5. Recall that the transition function between these two charts is

φ21 : (x, y) 7→ 1

r2
(x, y)

where r2 = x2 + y2 (see Example 2.7).

(a) Write down a curve σ in X through the point (1, 0, 0), such that ∆f1 : [σ] 7→ (1, 0).

(b) Compute the Jacobian matrix of φ21 at the point (1, 0), and then use this to find ∆f2([σ]).

(c) If we view T(1,0,0)X as a subspace of R3 then what vector does [σ] correspond to?

2. Let X,Y and Z be three manifolds, and let F : X → Y and G : Y → Z be smooth functions.
Fix a point x ∈ X. Prove that the chain rule holds, i.e. that

D(G ◦ F )|x = DG|F (x) ◦DF |x

(a) by picking co-ordinate charts.

(b) without picking co-ordinate charts.

3. Let h : R2 → R be the function h(x, y) = xy, and for any α ∈ R let Zα denote the corresponding
level set of h.

(a) For α 6= 0, find the tangent space to any point in Zα as a subspace of R2.

(b) For any point (x, y) ∈ Z0 find the kernel of Dh|(x,y).

4. Let X be a manifold of dimension n, and let h, g : X → R be two smooth functions. Let α and
β be regular values of h and g respectively, and let Zα and Wβ be the corresponding level sets.
Suppose that, for all points x ∈ Zα ∩Wβ , we have:

dim(TxZα ∩ TxWβ) = n− 2

(a) Show that Zα ∩Wβ is an (n− 2)-dimensional submanifold of Z.

Now generalize this result by:

(b) Replacing h by a smooth function h : X → Rm and g by a smooth function g : X → Rk.

(c) Replacing Zα and Wβ by arbitrary submanifolds of X. Hint: the question is local!

5. Let Z ⊂ Rn be a 1-dimensional submanifold.

(a) Explain why looking at the tangent space to points in z defines a function:

F : Z → RPn−1

(b) Prove that this function F is smooth. Hint: pick a chart on Z and consider the inclusion
ι : Z ↪→ Rn.

(c) Prove that the subset Z2 ⊂ R2 described at the start of Section 3.1 is not a submanifold.
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For questions 1 and 2 we use Definition 5.17 of a ‘tangent vector’. We let X
be an n-dimensional manifold, and let Ax denote the set of all charts containing
a fixed point x ∈ X.

1. Let h : X → R be a smooth function. For any chart (U, f) ∈ Ax, we can
view the Jacobian matrix

D(h ◦ f−1)|f(x) : Rn → R

as a vector in Rn. This defines a function from Ax to Rn. Is it a tangent
vector?

Now let Y be a second manifold, of dimension k, and for y ∈ Y let By denote
the set of all charts containing y.

2. Let F : X → Y be a smooth function, and set y = F (x). Let δ : Ax → Rn

be a tangent vector to x.

(a) Fix a chart (U, f) ∈ Ax and let δf ∈ Rn be the value of δ in this
chart. Show that the function

DF |x(δ) : By → Rk

(V, g) 7→ D(g ◦ F ◦ f−1)|f(x)(δf )

is a tangent vector to y.

(b) Show that DF |x(δ) does not depend on our choice of chart (U, f).

(c) Show that this construction agrees with our earlier definition of the
derivative DF |x.

(Continued on next page.)
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?3?. (a) Let ξ be the vector field on S1 defined by

ξ|(x,y) = (−y, x)> ∈ T(x,y)S1 ⊂ R2

(from Example 6.2), and let

f1 : (x, y) 7→ x̃ =
x

1 + y

be the stereographic projection co-ordinates from Example 2.4. Find
the function

ξ̃1 : R→ R

which is the expression for ξ in this chart. Hint: f1 can be extended
to a function on an open set in R2. Also note the identity:

1 + x̃2 = 2/(1 + y)

(b) Now find the expression for ξ in the co-ordinates f2 : (x, y) 7→ x
1−y

using the transformation law for vector fields.

4. For any s ∈ R, consider the linear map:

Ĝs =

1 0 0
0 cos s sin s
0 − sin s cos s

 : R3 → R3

(a) Prove that Ĝs induces a diffeomorphism Gs : S2 → S2, and show
that this defines a flow G on S2.

(b) Find the associated vector field ξG, and find the points where ξG is
zero.

5. (a) Show that a vector field on T 2 is the same thing as a smooth function

ξ̂ : R2 → R2 satisfying

ξ̂(x+ n, y +m) = ξ̂(x, y)

for all n,m ∈ Z and all points (x, y) ∈ R2.

(b) Suppose ξ̂ is the constant function

ξ̂ : (x, y) 7→ (u, v)

for some fixed (u, v) ∈ R2. Find a flow G on T 2 such that ξG is the

vector field corresponding to ξ̂.
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?1?. (a) Let F : X → Y be a smooth function between two manifolds. Fix
x ∈ X and let y = F (x). Show that the linear map

C∞(Y )→ C∞(X)

h 7→ h ◦ F

induces a well-defined map from T ?y Y to T ?xX, and that the rank of
this map equals the rank of F at x.

(b) Let Z be a submanifold of Rn. Deduce that for any x ∈ Z there is a
natural surjection Rn → T ?xZ.

2. (a) Let Z ⊂ Rn be the level set of a function h ∈ C∞(Rn) at a regular
value, and fix a point x ∈ Z. Show that we can identify T ?xZ with the
quotient of Rn by the subspace spanned by the vector Dh|>x ∈ Rn.

(b) Use this to get an explicit description of the cotangent spaces to Sn.

(c) Generalize part (a) by replacing h with a smooth function h : Rn →
Rk.

(d) Now suppose Z ⊂ X is the level set of a smooth function H : X → Y
at a regular value. What can you say about the cotangent spaces to
points in Z?

3. Let σ be the curve through (1, 0, 0) ∈ S2 defined by

σ :(−ε, ε)→ S2

t 7→
(

cos t, 1√
2

sin t, 1√
2

sin t
)

and let ∂σ ∈ Der(1,0,0)(S
2) be the corresponding derivation at (1, 0, 0).

(a) Consider the chart with domain U = S2 ∩ {x > 0} and co-ordinates:

f : (x, y, z) 7→ (y, z)

Write down explicitly the partial derivative operator in Der(0,0)(Ũ)
that corresponds to ∂σ.

(b) Let h ∈ C∞(S2) be the function:

h : (x, y, z) 7→ tan−1(sinh−1 x)

log(cosh(x) + 2)
+ xy3 + x2z

Compute ∂σh. Hint: think before you calculate.

Continued on next page.
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4. In this exercise we’ll prove Proposition 7.8 ‘in reverse’. Fix a point x in a
manifold X.

(a) For any h ∈ C∞(X), define a function:

TxX → R
[σ] 7→ ∂σ(h)

Show that this function is well-defined and linear.

(b) Show that the resulting function

C∞(X)→ (TxX)?

is linear, and induces a well-defined injection T ?xX → (TxX)?.

(c) Prove that this is actually an isomorphism T ?xX
∼−→ (TxX)?. You

may use other results from the course at this point.

(d) Convince yourself that this is the dual to the isomorphism in Propo-
sition 7.8.

5. Let x ∈ X be a point in a manifold. Let d : C∞(X)→ R be a linear map
which vanishes on the subspace Rx(X). Show that d is a derivation at x.

6. Let F : X → Y be a smooth function, fix x ∈ X, and let y = F (x). Let

DF |x : Derx(X)→ Dery(Y )

be the dual linear map to the map defined in question 1(a).

(a) If σ is a curve through x, what does the operator DF |x(∂σ) do to
a function h ∈ C∞(Y )? Show that DF |x agrees with our previous
definitions of the derivative.

(b) Using this definition, prove that the chain rule holds.
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?1?. (a) Let X be the open ball B1

(
(0, 0)

)
⊂ R2, and define a vector field ξ̃ on X by:

ξ̃ : (x, y) 7→ (0,
√

1− x2 − y2)

Viewing ξ̃ as operator in Der(X), evaluate it on the function x2 + y2 ∈ C∞(X).

(b) Let ξ be the vector field on S2 defined by:

ξ : (x, y, z) 7→ (0, z,−y)

Let h ∈ C∞(S2) be the function h : (x, y, z) 7→ z2. Find a function g ∈ C∞(R3) such that
ξ(h) = g|S2 .

(c) What’s the connection between parts (a) and (b)? State the relationship clearly, but you
don’t need to provide a detailed justification.

2. (a) Prove that C∞(RPn−1) can be identified with the space of all smooth functions

h : Rn \ 0→ R

which obey the condition:

h(λx) = h(x), ∀λ ∈ R \ 0, x ∈ Rn \ 0

(b) Let x1, ..., xn be the standard co-ordinates on Rn. Show that for any i, j ∈ [1, n] the
operator xi

∂
∂xj

defines a vector field on RPn−1. Deduce that there is a linear map

Matn×n(R) −→ Der(RPn−1)

but show that this is not an injection.

(c) (Advanced) See how much of this you can generalize to the Grassmannian Gr(k, n).

3. (a) Let h ∈ C∞(R2) be the function h(x, y) = x2y. Write down the one-form dh.

(b) Let α+ and α− be the one-forms

α± = cos y dx± x sin y dy

on R2. Does there exist a function h+ ∈ C∞(R2) such that dh+ = α+? Does there exist
a function h− ∈ C∞(R2) such that dh− = α−?

4. In Example 8.5, verify that dh̃1 transforms into dh̃2 under the transition function between the
two charts.

5. If we have a vector field ξ and a one-form α on a manifold X, show that we can combine them
to get a function gξ,α ∈ C∞(X). If α = dh for some h ∈ C∞(X), find another description of
gξ,α.

1
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1. Consider the chart on Sn with domain U = Sn∩{x0 > 0} and co-ordinates:

f : (x0, x1, ..., xn) 7→ (x1, ..., xn)

(a) Let ι : Sn ↪→ Rn+1 be the inclusion. For each i ∈ [0, n], find the
expression for the one-form ι∗dxi in the chart (U, f).

(b) Use (a) to find the expression of the one-form ι∗(x0 dx0+ ...+xn dxn)
in the chart (U, f). Now find another way to get to this answer.

2. Let α be the one-form
α = y dx− x dy

on R2, and let ι : S1 ↪→ R2 be the inclusion map.

(a) Show that ι∗α is not zero at any point.

(b) Is there a function h ∈ C∞(S1) such that ι∗α = dh?

3. Convince yourself that, for a general smooth function F : X → Y , it is
not possible to ‘pull-back’ a vector field along F . Now find a hypothesis
on F that makes it possible.

4. Let V be a four-dimensional vector space with a basis e1, e2, e3, e4.

(a) Write down a basis for ∧3V ?.

(b) If c ∈ ∧2V ? is decomposable, show that c ∧ c = 0. Find an element
of ∧2V ? that is not decomposable.

5. Let V be a vector space, let c ∈ V ? and let ĉ ∈ ∧2V ?. For any three
vectors v1, v2, v3 ∈ V , find an expression for the value of

(c ∧ ĉ)(v1, v2, v3) ∈ R

Hint: start by assuming that ĉ is decomposable. If you have the energy,
try this question again for the case that both c and ĉ lie in ∧2V ?.

6. Let h, g ∈ C∞(R2) be the functions h(x, y) = x2y and g(x, y) = sin(xy).
Find the two-form dh ∧ dg.

7. In Example 8.30 we saw that the curl operator ∇× on vector fields in 3-
dimensions can be interpreted as a special case of the exterior derivative d.
Find similar interpretations of the gradient∇ and divergence∇· operators.
What does Proposition 8.31(i) say in this situation?

1



8. Let (U, f) be the chart on Sn from Question 1, and let x̃1, ..., x̃n be the
standard co-ordinates on the codomain Ũ of this chart.

(a) Let ι : Sn ↪→ Rn+1 be the inclusion map. Find the expression of the
n-form ι∗(dx0 ∧ dx1 ∧ ... ∧ dxn−1) in the chart (U, f).

(b) For the (n− 1)-form

α̃ =

(
1−

n∑
i=1

x̃2i

) 1
2

dx̃1 ∧ ... ∧ dx̃n−1 ∈ Ω1(Ũ)

compute dα̃. Explain the relationship to your answer for (a).

9. (a) Let V be a vector space. Given c ∈ ∧pV ?, and v ∈ V , show that
they can be combined to get an element ivc ∈ ∧p−1V ?. Now choose
a basis for V , and describe ivc in the case that both v and c are basis
elements.

(b) Let X be a manifold. Deduce that if we are given α ∈ Ωp(X) and ξ
a vector field on X, we can combine them to get a (p− 1)-form iξα.
Prove that if α and ξ are smooth then iξα is also smooth.

10. (a) Show that a smooth function F : X → Y induces a linear map

F ? : Hp
dR(Y )→ Hp

dR(X)

for any p.

(b) Show that the wedge product

∧ : Hp
dR(X)×Hq

dR(X)→ Hp+q
dR (X)

is well-defined, for any p, q.

(c) What is the topological meaning of the number dimH0
dR(X)? Hint:

what kind of function h ∈ C∞(X) satisfies dh = 0?

2
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1. Let x, y, z be the standard co-ordinates on R3. Let Z be the level set at
a regular value of a function h ∈ C∞(R3), and let ι : Z ↪→ R3 denote the
inclusion. Let ω be the two-form:

ω = dx ∧ dy ∈ Ω2(R3)

Show that if ∂h
∂z 6= 0 at all points in Z then ι∗ω is a volume form on Z.

2. Let X be a compact oriented n-dimensional manifold. For any α ∈ Ωp(X)
and β ∈ Ωn−p−1(X) show that:∫

X

dα ∧ β = ±
∫
X

α ∧ dβ

3. For any manifold X, let Or(X) denote the set of all possible orientations
on X. Let X and Y be two n-dimensional manifolds.

(a) Let F : X → Y be a smooth function which has rank n at all points.
If ω is a volume form on Y , show that F ?ω is a volume form on X.

Show that the function

F ? : Or(Y )→ Or(X)

[ω] 7→ [F ?ω]

is well-defined.

(b) Suppose that that X is connected and orientable. Show that Or(X)
contains exactly two elements.

Deduce that a diffeomorphism G : X → X induces a bijection from
Or(X) to Or(X) which is either the identity, or a transposition.

In the first case we say that G is orientation-preserving, and in the second
case we say that G is orientation-reversing.

(c) Suppose X is connected and orientable, and let G : X → X be an
orientation-reversing diffeomorphism. Now suppose that q : X → Y
is a smooth function having rank n at all points, satisfying:

q ◦G = q

Prove that Y cannot be orientable.

1



(d) Show that the Klein bottle K (Sheet 1, Q5) is not orientable.

(e) Show that the function
G : x 7→ −x

is a diffeomorphism from Sn to itself.

Now let ω0 = dx1∧ ...∧dxn+1 be the standard volume form on Rn+1,
and let ω′ be the induced volume form on the submanifold Sn (as in
Proposition 9.6). Fix the point p = (0, ..., 0, 1) ∈ Sn, and consider
the linear map:

∧n(DG|p)? : ∧nT ?
−pS

n → ∧nT ?
p S

n

Show that applying this map to the element ω′|−p produces either
ω′p or −ω′p, depending on whether n is odd or even. Hint: consider
T±pS

n as subspaces of Rn+1.

Deduce that G : Sn → Sn is orientation-preserving iff n is odd.

(f) Show that RPn is not orientable if n is even.

4. (a) Prove that a 2-form α on the torus T 2 is the same thing as 2-form
on R2

α̂ = ĥ(x, y) dx ∧ dy ∈ Ω2(R2)

satisfying ĥ(x+ n, y +m) = ĥ(x, y) for all n,m ∈ Z.

(b) In Example 2.12 we found an atlas on the torus T 2 with four charts
(Ui, fi), 1 ≤ i ≤ 4. Find a volume form ω on T 2 such that each of
these charts is oriented with respect to ω.

(c) Show that there is a partition-of-unity on T 2 consisting of four func-
tions ϕ1, ϕ2, ϕ3, ϕ4 such that each ϕi is only non-zero inside the chart
Ui. Hint: it can be constructed from the partition-of-unity on T 1

found in Example 9.17.

(d) Pick α ∈ Ω2(T 2), and let α̂ = ĥ dx∧dy be the corresponding periodic
two-form on R2 as in part (a). Show that∫

T 2

α =

∫ 1

y=0

∫ 1

x=0

ĥ(x, y) dx dy

(using the orientation [ω] as in part (b)). Now prove that there is no
β ∈ Ω1(T 2) such that ω = dβ.

5. (a) Let X be a manifold, and let Z ⊂ X be a k-dimensional submanifold
which is compact and oriented. Use Z to construct a linear map from
Hk

dR(X) to R.

(b) Let α and β be the closed one-forms on T 2 corresponding to the
periodic one-forms dx and dz on R2 (see e.g. Q4, part (a)). Construct
two linear maps a, b ∈ (H1

dR(T 2))∗ such that

a([α]) 6= 0, a([β]) = 0, b([α]) = 0, b([β]) 6= 0

and deduce that H1
dR(T 2) is at least two-dimensional.
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1. Let F : X → Y be a smooth function between two manifolds, and define
a function

DF : TX → TY

between their tangent bundles by:

DF : (x, v)→
(
F (x), DF |x(v)

)
Show that DF is smooth.

2. Let π : E → X be a vector bundle, let ξ : X → E be a section, and let

Γξ = {(x, ξ|x), x ∈ X} ⊂ E

denote the graph of ξ. Show that Γξ is a submanifold of E, and that Γξ
is diffeomorphic to X.

3. Let π : E → T 1 be the ‘infinite Möbius strip’ vector bundle from Example
E.5. Show that a section of E is the same thing as a smooth function
σ̂ : R→ R satisfying

σ̂(x+ 1) = −σ̂(x)

for all x ∈ R. Prove that E is not trivial.

4. Prove that Tn is parallelizable for any n.

5. Let X be a parallelizable manifold.

(a) Prove that T ?X is trivial. (Hint: dual bases.)

(b) Now prove that ∧pT ?X is trivial, for all p.
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